
(a) 5 (b) 40 (c) 80 (d) 15

SECTION B

Q. 11 In fig.2, A, B and C are points on OP, OQ and OR respectively such that $A B l l P Q$ and ACllPR . Show that BCllQR .

Fig. 2
Q. 12 If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$ where 4 A is an acute angle, find the value of A . OR
If $5 \tan \theta=4$, find the value of $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}$.
Q. 13 In figure 3, ABCD is a parallelogram. Find the values of x and y.

Figure 3
Q. 14 In figure 4, Two triangles ABC and DBC are on the same base BC in which $\angle A=\angle D=90^{\circ}$

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

	if CA and BD meet each other at E , show that $A E \times C E=B E \times D E$ Figure 4
Q. 15	If α and β are the zeroes of $x^{2}+7 x+12$ then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$
Q. 16	Convert the given cumulative frequency table into frequency distribution table :
Q. 17	Find the mode of the following data :

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Q. 18 Check whether 6^{n} can end with the digit O for any natural number n ?

SECTION C

Q. 19 If α and β are zeroes of the quadratic polynomial $x^{2}-6 x+a$; find the value of .a. if $3 \alpha+2 \beta=20$.
Q. 20 Find HCF of 180, 252 and 324 using Euclid.s Division Lemma.
Q. 21

Prove that $\sqrt{7}$ is an irrational number.
Prove that $3+\sqrt{5}$ is an irrational number.
Q. 22

Prove that $\frac{\sec \theta+\tan \theta}{\sec \theta-\tan \theta}=\left(\frac{1+\sin \theta}{\cos \theta}\right)^{2}$
Q. 23 In $\triangle \mathrm{ABC}$, in fig. 5 , a PQ meets AB in P and AC in Q . If $\mathrm{AP}=1 \mathrm{~cm}, \mathrm{~PB}=$ $3 \mathrm{~cm}, \mathrm{AQ}=1.5 \mathrm{~cm}$
$Q \mathrm{C}=4.5 \mathrm{~cm}$, prove that area of $\triangle A P Q$ is one sixteenth of the area of $\triangle A B C$.

Fig. 5
Q. 24 In figure 6, P and Q are the midpoints of the sides CA and CB respectively of $\triangle A B C$ right angled at C . Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

